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Abstract
Using sound velocity measurements, we report a detailed investigation of the elastic properties
of Rb4LiH3(SO4)4 realized as a function of temperature and pressure. Results are compared to
predictions of a phenomenological Landau model. Supported by recent Raman scattering
measurements, we assume that the 4 → 2 structural transformation observed at Tc = 134 K
corresponds to a pseudo-proper ferroelastic transition. For the numerical analysis, all coupling
parameters are determined using the temperature dependence of the frequency of the soft
optical B mode, the temperature dependence of spontaneous strains, and the pressure
dependence dTc/dP = 191 ± 2 K GPa−1 also determined in this work. Our comparison
indicates that the 4 → 2 structural transition in Rb4LiH3(SO4)4 is fully consistent with
predictions derived using our pseudo-proper ferroelastic model. Thus, all data presented in this
paper corroborate that the mechanism leading to the structural transition at Tc = 134 K results
from the softening of the B optical mode observed at 31 cm−1. This detailed analysis also
refutes the idea that Rb4LiH3(SO4)4 shows incomplete softening of the soft acoustic mode also
associated with that structural transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the years, there have been many controversies regarding
the properties of the ferroelastic compound Rb4LiH3(SO4)4.
Initially designated as LiRb5(SO4)31.5H2SO4 [1–4], subse-
quent chemical analysis revealed that Rb4LiH3(SO4)4 is the
proper chemical formulation. The room temperature point
group assignation for Rb4LiH3(SO4)4 [5, 6] was also incorrect.
This led to the misleading interpretation that the structural
transformation at 134 K was a 4mm → 2mm ferroelastic phase
transition. It was only after additional x-ray [7] and neutron
diffraction [8] measurements that the correct 4 → 2 group–
subgroup symmetry change was identified. Subsequently, the
elastic properties of Rb4LiH3(SO4)4 have been revisited by
different groups. Both experimental approaches, Brillouin
scattering [9] and ultrasonic study [10], have now confirmed
that the effective elastic constant (C11−C12)/2 partially softens
as the temperature is decreased down to Tc. Nonetheless, in
order to account for their respective findings, different models
have been used. On the one hand, the ultrasonic velocity

measurements [10] are interpreted within the framework of a
pseudo-proper ferroelastic model driven by an order parameter
Q which differs from the strains. On the other hand, Mróz
et al [9] analyzed their data using a proper ferroelastic
model assuming that the strain combination es = α1(e1 −
e2) + α6e6 is the order parameter. In their interpretation
they also claimed that the softening of the acoustic mode,
associated with the spontaneous strain es, is incomplete at
Tc. This conclusion is atypical as all known proper [11]
and pseudo-proper [12, 13] ferroelastic compounds show
complete softening for a continuous phase transition. For a
general review on proper and pseudo-proper ferroelastic phase
transitions, readers are invited to consult papers by Carpenter
et al [14] and Salje [15].

In order to elucidate the nature of the ferroelastic
transition, as well as to validate or refute the possibility
of incomplete softening in Rb4LiH3(SO4)4, we present a
detailed investigation of the elastic properties measured as
a function of temperature and pressure. These results are
complemented by new Raman measurements [16] which
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indicate that the character of the ferroelastic transition
observed at Tc = 134 K is more likely pseudo-proper.
Thus, our ultrasonic velocity data are compared to numerical
predictions derived using a Landau model. As we show,
the pseudo-proper ferroelastic model accounts very well for
the temperature/pressure dependence of the elastic moduli,
the temperature dependence of the spontaneous strains, the
temperature dependence of the soft optical mode [16], and the
pressure dependence of Tc. Finally, our analysis also indicates
that the elastic properties of Rb4LiH3(SO4)4 are compatible
with complete softening of the acoustic mode at Tc.

The remainder of the paper is organized as follows. In
section 2 we briefly describe the experimental methods used
for this investigation, while section 3 provides the theoretical
background related to a pseudo-proper ferroelastic phase
transition. Section 4 is dedicated to the determination of all
coupling coefficients. This is achieved principally using the
pressure dependence of Tc, the spontaneous strains, and the
temperature dependence of the soft optical mode. In section 5,
the elastic moduli determined from ultrasonic velocity data are
compared to the model’s predictions. Section 6 is devoted to
the analysis of the temperature dependence of the soft acoustic
mode. We specifically compare the soft mode effective
modulus with predictions obtained from the pseudo-proper
model. This comparison shows how velocity measurements,
obtained over a wide temperature range, could in principle be
used to determine the nature of ferroelastic transitions. Finally,
a summary of the principal findings is presented in section 7.

2. Experiment

The Rb4LiH3(SO4)4 crystal was grown by the Crystal Physics
Laboratory of the Faculty of Physics at Mickiewicz University,
Poland [9]. For this investigation, several samples in
the form of about 3 × 3 × 3 mm3 cubes were used to
measure the sound velocity along different crystallographic
directions. Longitudinal and transverse waves were generated
and detected using 30 MHz lithium niobate transducers
mounted on one of the parallel faces of the crystal. The relative
variation in the sound velocity (�V/V ) with a resolution of
1 ppm was measured as a function of temperature and pressure
using a pulsed acoustic interferometer. For measurements
under pressure, the transducer-sample assemblage was inserted
in a Cu–Be pressure cell filled with a 3-methyl-1-butanol fluid
acting as the pressure-transmitting medium. A small wire of
lead mounted close to the sample was used to determine the
actual pressure at different temperatures [17].

3. Pseudo-proper ferroelastic model

According to the classification adopted by Toledano et al [18],
a pseudo-proper ferroelastic transition is not strictly speaking a
strain-induced structural transformation. However, one of the
necessary requirements is that the primary order parameter Q
must belong to the same irreducible representation [18, 14]
as that of the spontaneous strain es, acting as a secondary
order parameter. Under this condition, the invariant bilinear

coupling term Qes leads to softening of the acoustic mode
associated with es. Thus, the observation of soft acoustic and
optical modes, both with the same representation, generally
leaves no doubt regarding the nature of the ferroelastic
transition. For example, it has been clearly established that
the elastic instability in ferroelastic compounds BiVO4 [12],
LaP5O14 [19], and SnO2 [13] is triggered by the softening of
an optical mode. In the case of Rb4LiH3(SO4)4, according
to group theory [20], a 4 → 2 pseudo-proper ferroelastic
transition could be driven by the softening of a B optical
mode which couples to the strain es = α1(e1 − e2) +
α6e6 [18]. As softening of the B active Raman mode [16] and
acoustic mode (this paper) have been confirmed, it is sensible
to assume that the structural transition in Rb4LiH3(SO4)4 is
pseudo-proper ferroelastic. Thus, in this section we present a
Landau free energy that can be used to predict the behavior
of the soft optical mode, the spontaneous strains, and the
temperature/pressure dependence of the elastic moduli. The
total Gibbs energy considered here is similar to the one
derived by David [21] to account for the 4/m → 2/m
ferroelastic transition observed in BiVO4. As the 4 →
2 ferroelastic transition belongs to the same irreducible
representation, we adopt the same phenomenological approach
for Rb4LiH3(SO4)4.

For convenience, we divide the Landau expansion of the
Gibbs free energy into four distinct contributions

G(Q, eα) = FL(Q) + Fel(eα) + Fc(Q, eα) + FP (P, eα) (1)

where FL(Q) is the usual second-order Landau free energy
expanded in terms of an order parameter Q,

FL(Q) = 1
2 AQ2 + 1

4 A4 Q4. (2)

As shown in [22], the saturation of the order parameter in
ferroelastic compounds can be accounted for by using

A = αθs

[
coth

(
θs

T

)
− coth

(
θs

To

)]
, (3)

which is equivalent to the usual Landau term A = α(T − To)

in the high temperature limit (T � θs). The elastic energy
Fel(eα) for the high temperature point group 4 symmetry [23]
is

Fel(eα) = 1
2 C11(e

2
1 + e2

2) + 1
2 C33e2

3 + 1
2 C44(e

2
4 + e2

5)

+ 1
2 C66e2

6 + C12e1e2 + C13(e1 + e2)e3

+ C16(e1 − e2)e6 (4)

where Cαβ represent the bare elastic constants of the high
temperature phase. Here, the elastic constants Cαβ and strains
eα are defined relative to the Voigt notation (α, β = 1 . . . 6).
The coupling energy Fc(Q, eα), representing the coupling
between the strain components eα and the order parameter Q,
can be obtained using simple symmetry arguments [21]. Thus,
the lower-order invariant coupling terms correspond to

Fc(Q, eα) = β Q(e1 − e2) + γ Qe6 + δQ2e3 + λQ2(e1 + e2)

+ ζ e4e5 Q + η(e2
4 − e2

5)Q. (5)
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Table 1. Values of the bare elastic constants.

Bare elastic
constant 1010 (N m−2)

Co
11 5.67

Co
12 0.50

Co
13 1.80

Co
16 −0.24

Co
33 5.14

Co
44 0.74

Co
66 1.14

Finally, in order to calculate the pressure dependence of the
elastic constants, we also consider the hydrostatic pressure
contribution

FP (P, eα) = P(e1 + e2 + e3). (6)

Using the equilibrium condition, ∂G/∂eα = 0, solutions
for the spontaneous strains eα(Q, P) are obtained and
correspond to

e1 − e2 = 2(γ C16 − βC66)

Cd
Q

e1 + e2 = 2(δC13 − λC33)

Ca
Q2 − 2(C33 − C13)

Ca
P

e3 = −δ(C11 + C12) − 2λC13

Ca
Q2 − Cg

Ca
P

e4 = 0 e5 = 0 e6 = −γ (C11 − C12) − 2βC16

Cd
Q

(7)
with

Ca = (C11 + C12)C33 − 2C2
13

Cd = (C11 − C12)C66 − 2C2
16

Cg = C11 + C12 − 2C13.

(8)

Subsequently, solutions for the order parameter Q(T, P), the
critical temperature Tc and dTc/dP are obtained from the
minimization of the free energy with respect to Q. These
solutions can be expressed as

Q2(T, P) = αCa

�

{
θs

[
coth

(
θs

Tc

)
− coth

(
θs

T

)]
+ dTc

dP
P

}

(9)
Cb

αCd
= θs

[
coth

(
θs

Tc

)
− coth

(
θs

To

)]
(10)

dTc

dP
= 2

Cc

αCa
(11)

where

Cb = γ 2(C11 − C12) + 2β(βC66 − 2γ C16)

Cc = δ(C11 + C12 − 2C13) + 2λ(C33 − C13)

� = A4Ca − 4λ2C33 − 2(C11 + C12)δ
2 + 8δλC13.

(12)

Due to the bilinear coupling terms β Q(e1 − e2) + γ Qe6, the
transition temperature Tc, given by equation (10), is shifted
with respect to the uncoupled limit To.

Figure 1. Temperature dependence of the frequency squared of the
B/A active Raman modes. Symbols correspond to data published by
Aktas et al [16] while continuous lines correspond to predictions
using equation (14).

4. Determination of the coupling coefficients

As mentioned previously, recent Raman measurements [16]
indicate that the character of the ferroelastic transition in
Rb4LiH3(SO4)4 is pseudo-proper. In this case, the order
parameter Q can be associated with the normal coordinate
vibrations of a soft mode. If one treats this mode as a
simple harmonic oscillator, the first term of equation (2) can
be directly written as

1
2 mω2

Q(T )Q2 = 1
2 AQ2 , (13)

where, according to group theory [20], ωQ must correspond
to the frequency of a B mode for a 4 → 2 pseudo-
proper ferroelastic transition. Using the total free energy,
the temperature dependence of ω2

Q(T ) = ∂2G/∂ Q2 [13]
corresponds to

mω2
Q(T ) = αθs

[
coth

(
θs

T

)
− coth

(
θs

To

)]
� α(T − To)

T > Tc,

mω2
Q(T ) = −2

Ca A4

�
αθs

[
coth

(
θs

T

)
− coth

(
θs

Tc

)]
+ Cb

Cd

T < Tc.

(14)

The Raman scattering data are very valuable as they can
be used to obtain good numerical estimates for the model’s
parameter To. Using the numerical values reported in
tables 1 and 2, we compare in figure 1 predictions given by
equation (14) with recent Raman data [16] obtained for the low
frequency B/A mode (the symmetry of the soft mode in the low
temperature monoclinic phase is A). As shown, the peculiar
temperature dependence of the soft mode is well accounted for
using To = −510 K and θs = 65 K; the saturation temperature
θs has been estimated from the temperature dependence of the
strains (see figure 3).

For our numerical analysis, the elastic constants have
been deduced from ultrasonic velocity measurements (this

3
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Figure 2. Temperature dependence of the sound velocity of
longitudinal waves propagating along the z-axis obtained at different
pressures. The inset shows the pressure dependence of the
ferroelastic critical temperature Tc for Rb4LiH3(SO4)4.

Table 2. Values of the coupling constants deduced from the soft
optical mode, spontaneous strains, and the pressure dependence of
Tc.

Variables Values

α 6.74 × 109

θs 65
A4 1.64 × 1017

To −868 K
Tc 134 K
β −3.35 × 1011

γ −1.14 × 1010

δ 2.06 × 1013

λ 1.10 × 1013

η −1.00 × 1010

ζ 2.00 × 1010

ρ 2810

work). Values reported in table 1 correspond to bare elastic
constants in the absence of any coupling or anharmonic
softening. For that reason, those values differ slightly from
previous published data [10, 9]. In order to determine the
pressure dependence of Tc (equation (11)), we also performed
a series of sound velocity measurements at different pressures.
These results, which show the temperature dependence of
the velocity of longitudinal waves propagating along the z-
axis, are presented in figure 2. This mode is particularly
convenient as the ferroelastic transition temperature coincides
with a sudden drop in the value of the velocity (�V/V ∼ 2%).
As shown in figure 2, the ferroelastic transition temperature is
very sensitive to pressure and increases at a rate of dTc/dP =
191 ± 2 K GPa−1.

Using the value of dTc/dP (this work), the spontaneous
strain data [8], and To determined from the Raman data [16],
the remaining coefficients γ , β , δ, λ, and A4 have been
obtained using

Cb

αCd
= Tc − To = 642.8 K

dTc

dP
= 2

Cc

αCa
= 191 K GPa−1

Figure 3. Temperature dependence of the spontaneous strains
(symbols) obtained by Mróz et al [8]. Here the Voigt notation
representations e1 − e2 = e11 − e22 and e6 = 2e12 have been used.
The continuous lines are obtained using equation (7) with the order
parameter Q given by equation (9), while the broken lines
correspond to mean-field predictions with Q ∝ √

Tc − T .

e1 − e2

e6
= − 2(γ C16 − βC66)

γ (C11 − C12) − 2βC16
= 3

e6(0 K) = −γ (C11 − C12) − 2βC16

Cd
Qo = 0.0096

e3(0 K) = δ(C11 + C12) − 2λC13

Ca
Q2

o = −0.0016

Q2
o � αTc

A4
.

(15)

The last coefficients ζ and η are set by hand in order
to reproduce the experimental data obtained on C44. The
numerical values derived from this set of equations are
reported in table 2. To show the pertinence of the numerical
procedure, we compare in figure 3 the calculated spontaneous
strains (equation (7) with coefficients given in tables 1
and 2) to the experimental data obtained by Mróz et al
[8]. The numerical calculations (continuous lines) using
the temperature dependence of the order parameter defined
in equation (9) are also compared to the usual mean-field
predictions where Q ∝ √

Tc − T (broken lines). As shown,
setting the saturation temperature, θs = 65 K, adequately
accounts for the temperature dependence of the strains, even
at low temperatures.

5. Elastic properties and experimental results

As all elastic and coupling constants are determined, the model
can be used to calculate the temperature/pressure dependence
of the elastic constants using [24]

C∗
mn = ∂2G

∂em∂en
− ∂2G

∂ Q∂em

(
∂2G

∂ Q2

)−1
∂2G

∂en∂ Q
. (16)

As shown in table 3, all 13 independent elastic constants of
the monoclinic phase are obtained, illustrating that the model

4
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Table 3. Temperature/pressure dependence of the elastic constants
for a 4 → 2 pseudo-ferroelastic phase transition. The superscript o
corresponds to bare elastic constants in the absence of coupling or
anharmonic softening.

Tetragonal 4 Monoclinic 2

C11 → Co
11 − β2

A(T )−α
dTc
dP P

Co
11 − (β+2λQ)2

A(Tc )+2A4 Q2

C22 → Co
11 − β2

A(T )−α
dTc
dP P

Co
11 − (β−2λQ)2

A(Tc )+2A4 Q2

C33 → Co
33 Co

33 − 4δ2 Q2

A(Tc )+2A4 Q2

C44 → Co
44 Co

44 + 2ηQ2

C55 → Co
44 Co

44 − 2ηQ2

C66 → Co
66 − γ 2

A(T )−α dTc
dP P

Co
66 − γ 2

A(Tc )+2A4 Q2

C12 → Co
12 + β2

A(T )−α dTc
dP P

Co
12 + (β+2λQ)(β−2λQ)

A(Tc)+2A4 Q2

C13 → Co
13 Co

13 − 2δQ(β+2λQ)

A(Tc )+2A4 Q2

C16 → Co
16 − βγ

A(T )−α
dTc
dP P

Co
16 − γ (β+2λQ)

Y (Q2)

C23 → Co
13 Co

13 + 2δQ(β−2λQ)

A(Tc )+2A4 Q2

C26 → −Co
16 + βγ

A(T )−α
dTc
dP P

−Co
16 + γ (β−2λQ)

A(Tc )+2A4 Q2

C36 → 0 − 2γ δQ
A(Tc)+2A4 Q2

C45 → 0 ζ Q

properly characterizes a 4 → 2 structural change. Our
calculation also indicates that, even in the high temperature
phase (tetragonal), C11, C12, C16, and C66 are re-normalized
via the coupling with the soft optical B mode, leading to a
nonlinear temperature/pressure dependence. These predictions
can be compared to effective elastic moduli, ρv2, (figures 5
and 6) determined via acoustic velocity measurements. The
expressions of ρv2 as a function of the elastic constants are
reported in table 4 [23]. These expressions correspond to
longitudinal (L) and transverse (T) modes propagating along
the principal crystallographic directions of the low temperature
phase (monoclinic group).

The temperature/pressure dependence of the elastic
constants listed in table 3 correspond to the contribution due
to the soft optical mode alone. Before any comparison can be
performed, contributions associated with all other modes need
to be taken into account. As these contributions are not part
of the Landau formulation, they are dealt with separately using
a phenomenological approach. As shown by Varshni [25], the
usual lattice contribution (often referred to as the anharmonic
contribution) can be well accounted for using an empirical
expression [26] such as

Canh = Co(1 − Dε̄ph) (17)

where Co is the bare elastic constant at 0 K, D represents
the coupling strength, and ε̄ph is the mean energy per
oscillator. Calculating the average phonon energy using the
Einstein model and assuming a linear pressure dependence, the
temperature/pressure dependence of Canh can be written as

Canh = Co

(
1 − αT

e�/T − 1

)
(1 + αP P). (18)

Figure 4. Comparison of the elastic properties of Rb4LiH3(SO4)4

and the isomorphic compound K4LiH3(SO4)4 using the temperature
dependence of C33 and γ1. The continuous lines represent fits
obtained using equation (18) with the coefficients listed in table 5.

Fortunately, in the case of Rb4LiH3(SO4)4, the anharmonic
contribution can be evaluated independently using velocity
measurements for the isomorphic compound K4LiH3(SO4)4.
As that compound shows no ferroelastic transition [9], the
temperature dependence of the elastic properties is solely due
to the anharmonic contribution, equation (18).

For that purpose, a series of sound velocity measurements
have been performed on K4LiH3(SO4)4 as a function of
temperature/pressure. After fitting with equation (18), values
for �, αT , and αP have been determined, see table 5. The set
of coefficients (�i , αT i , αP i ) with i = 1 are for C11 and C22

while i = 3 represents the anharmonic contribution for C33.
The last series of coefficients, i = 4, is associated with the
temperature/pressure dependence of C44, C55, and C66.

As an example, we present in figure 4 the fit obtained
on K4LiH3(SO4)4 for the effective modulus associated with
longitudinal waves propagating along z and x (C33 and γ1).
These results are also compared with equivalent measurements
realized on Rb4LiH3(SO4)4. In the paraelastic phase, this
comparison shows that the temperature dependence of C33

is practically identical in both materials. This is consistent
with the model’s prediction as no temperature dependence
due to the soft optical mode is expected on C33 (see table 3
in the tetragonal phase). This indicates that the anharmonic
contributions for these two isomorphic compounds are indeed
very similar. Hence, the difference in the temperature
dependence of γ1 for K4LiH3(SO4)4 and Rb4LiH3(SO4)4 can
be attributed to coupling with the soft optical mode.

As all parameters are now determined, it is straightforward
to carry out a detailed comparison between the numerical
and experimental effective moduli. These comparisons as
a function of temperature and pressure are presented in
figures 5 and 6, respectively. Here, numerical predictions
correspond to continuous lines with the experimental data
represented by symbols. As shown in figures 5 and 6, the
largest variation, 77%, is observed on the effective modulus
γ5 associated with transverse waves propagating along [110]
with a polarization along [11̄0]. Unfortunately, due to the

5



J. Phys.: Condens. Matter 21 (2009) 455901 G Quirion et al

Table 4. Expression of ρv2 for the monoclinic phase. (Cp = C11+C22
2 , Cm = C11−C22

2 , C∗
66 = C66 + C16 + C26, and C∗

16 = C16 − C26).

Direction/mode Monoclinic phase

[100] L γ1 → 1
2 (C11 + C66 + √

(C11 − C66)2 + 4C2
16)

T[010] γ2 → 1
2 (C11 + C66 − √

(C11 − C66)2 + 4C2
16)

T[001] γ3 → C55

[010] L γ4 → 1
2 (C22 + C66 + √

(C22 − C66)2 + 4C2
26)

T[100] γ5 → 1
2 (C22 + C66 − √

(C22 − C66)2 + 4C2
26)

T[001] γ6 → C44

[001] L γ7 → C33

T[100] γ8 → 1
2 (C44 + C55 + √

(C44 − C55)2 + 4C2
45)

T[010] γ9 → 1
2 (C44 + C55 − √

(C44 − C55)2 + 4C2
45)

[110] L γ10 → 1
2 (Cp + C∗

66 + √
(C12 + C∗

66)
2 + (Cm + C∗

16)
2)

T[11̄0] γ11 → 1
2 (Cp + C∗

66 − √
(C12 + C∗

66)
2 + (Cm + C∗

16)
2)

T[001] γ12 → C44+C55+2C45
2

Figure 5. Temperature dependence of ρv2 measured along the
principal crystallographic directions of Rb4LiH3(SO4)4. The
experimental results are represented by open symbols while the
continuous lines correspond to predictions derived from the
pseudo-proper ferroelastic model.

large acoustic attenuation, we were unable to obtain data
in the ferroelastic phase or even close to the critical point.
Significant decreases at the critical point are also observed
in the value of γ1 (longitudinal modes propagating along
[100]) and C33, approximately 8% and 2.5%, respectively.
Finally, anomalies on the other modes are visible, however,
with much smaller variation. In general, we note that the
temperature/pressure dependence in the paraelastic phase is

Table 5. Parameters for the anharmonic contribution.

�i (K) αT i αP i (GPa−1)

1 95 0.044 0.167
3 95 0.058 0.187
4 95 0.028 0.040

remarkably well captured by the pseudo-proper ferroelastic
model. However, below the critical point, a clear departure
is observed for γ1 and C33. We attribute those differences
to the existence of structural domains in the low temperature
ferroelastic phase. In the case of Rb4LiH3(SO4)4, these
domains have been effectively observed and they consist of two
mutually perpendicular walls inclined at 35◦ relative to the x-
axis [8].

6. Soft acoustic mode

In their initial work, Mróz et al [9] claimed that
Rb4LiH3(SO4)4 could be described as a proper ferroelastic
compounds and that the acoustic mode associated with
the order parameter es showed incomplete softening at
Tc. As typical proper or pseudo-proper ferroelastic
compounds [12, 13] show complete softening, it is thus
imperative to re-examine that claim. In order to determine the
effective modulus of the soft mode, we first need to identify the
elastic submatrix related to the strain components e1 − e2 and
e6. For a 4 → 2 ferroelastic phase transition this corresponds
to (

C11−C12
2 C16

C16 C66

)
(19)

which is different from the matrix used by Mróz et al [9].
Considering that elastic tensors are necessarily symmetric, it
is clear that the form used by Mróz et al [9] is incorrect, as
well as all the non-symmetry ferroelastic submatrices listed
by Boccara [27]. Thus, the correct expression for the soft
modulus, obtained by finding the eigenvalues of the submatrix

6
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Figure 6. Pressure dependence of ρv2 measured at room temperature
along the principal crystallographic directions of Rb4LiH3(SO4)4.
The experimental results are represented by open symbols while the
continuous lines correspond to predictions derived from the
pseudo-proper ferroelastic model.

equation (19), corresponds to

Cs = 1

2

(
C11 − C12

2
+ C66

−
√(

C11 − C12

2
− C66

)2

+ 4C2
16

)
(20)

while the direction of propagation [23] is given by

tan 4ϕ = 4C16

C11 − C12 − 2C66
. (21)

Using values of elastic constants at room temperature,
the direction for complete softening in Rb4LiH3(SO4)4 should
correspond to ϕ ∼= 12◦ relative to the [110]. As that direction
does not coincide with one of the principal crystallographic
directions, this has contributed to delaying the experimental
determination of the actual soft mode. In figure 7 we present
new ultrasonic data that illustrate the temperature dependence
of the elastic modulus for transverse waves propagating and
polarized in the xy-plane. The direction of propagation
is identified by an angle φ measured away from the x-
axis. Moreover, as no ultrasonic signal was detected in the
ferroelastic phase, due to a rapid increase in the acoustic
attenuation, our results are combined with Brillouin scattering
data [9]. Figure 7 shows an increase in softening as the
direction of propagation is changed from φ = +54◦ to
35◦. The experimental results are compared to predictions

Figure 7. Temperature dependence of ρv2 for transverse waves
polarized in the xy-plane and propagating at an angle φ relative to
the x-direction. The experimental data, from ultrasonic (this work)
and Brillouin [9] scattering measurements, are represented by
symbols while continuous lines represent predictions obtained from
the pseudo-proper ferroelastic model.

derived from the pseudo-proper model (continuous lines)
which captures the overall temperature dependence. Finally,
considering that the pseudo-proper model indicates complete
softening at Tc, and that the experimental data agree well with
those predictions, we conclude that there is no experimental
evidence that Rb4LiH3(SO4)4 shows incomplete softening Tc.

7. Conclusions

In this investigation, we present a detailed analysis of the
elastic properties of Rb4LiH3(SO4)4. A substantial set
of experimental data, as a function of temperature and
pressure, is compared to a Landau model associated with a
4 → 2 pseudo-proper ferroelastic phase transition. The
model assumes that the elastic anomalies are due to the
coupling with a B optical mode which acts as the principal
order parameter. The proposed model is tested using a
minimum number of coupling parameters, adjusted using
the temperature dependence of the Raman soft B mode at
31 cm−1 [16], the thermal expansion data [8], and the pressure
dependence of the critical temperature dTc/dP = 19.1 ±
0.2 K kbar−1 (determined in this work). Our analysis shows
that within the framework of the pseudo-proper ferroelastic
model, it is possible to obtain predictions that account for
the temperature/pressure dependence of all elastic constants.
No such quantitative agreement is achieved using a proper
ferroelastic model. Departure from the pseudo-proper model’s
predictions, principally on C33 and γ1, is attributed to
structural domains emerging in the ferroelastic phase. Thus,
as argued in this investigation, Rb4LiH3(SO4)4 presents all
the characteristics associated with a pseudo-proper ferroelastic
transition. We also demonstrate that there is no experimental
evidence of incomplete softening at Tc. In fact, the elastic
properties of Rb4LiH3(SO4)4 are very similar to those of
BiVO4 which shows a 4/m → 2/m pseudo-proper ferroelastic
transition. Raman measurements [12] on BiVO4 show clear
evidence of softening of the optical Bg/Ag mode. As for
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Rb4LiH3(SO4)4, the direction of propagation for the soft
acoustic transverse mode is a few degrees away from [110]
(φo = 10◦). Moreover, in their analysis, Tokumoto et al
[28] show that the temperature dependence of the soft mode is
nonlinear and that complete softening is reached at Tc. These
similarities are not accidental as both compounds belong to
the same irreducible representation. The elastic properties of
BiVO4 have been analyzed by David [21] and their predictions
are similar to those presented in this work. In conclusion,
the ferroelastic character of Rb4LiH3(SO4)4 is not unique and
should also be compared with that of (NH4)4LiH3(SO4)4 [29].
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[1] Mróz B, Kiefte H and Clouter M J 1988 Ferroelectrics 82 105
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